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Summary. Constraint programming is a powerful technique for solving combinato-
rial search problems that draws on a wide range of methods from artificial intelli-
gence and computer science. The basic idea in constraint programming is that the
user states the constraints and a general purpose constraint solver is used to solve the
resulting constraint satisfaction problem. A key factor that can dramatically reduce
the search space during constraint solving is the criterion under which the variable
to be instantiated next is selected. For this purpose numerous strategies have been
proposed. Some of the best of such strategies exploit information about failures gath-
ered throughout search and recorded in the form of constraint weights, while others
measure the importance of variable assignments in reducing the search space. In this
work we give an introduction on the constraint satisfaction problems. We have also
collect and present the most recent and powerful variable ordering heuristics that
have been proposed in the literature. Our intention is to provide a comprehensive
view of the relative strengths and weaknesses of these heuristics. We also provide
insight as to which heuristic is preferable as a general purpose variable ordering
strategy.

1 Introduction

Constraint programming is a powerful technique for solving combinatorial search
problems that draws on a wide range of methods from artificial intelligence, com-
puter science, operations research, programming languages and databases. Con-
straint programming is currently applied with success to many domains, such as
scheduling, planning, vehicle routing, configuration, networks, and bioinformatics.
The basic idea in constraint programming is that the user states the constraints and
a general purpose constraint solver is used to solve the resulting constraint satis-
faction problem. Since constraints are relations, a Constraint Satisfaction Problem
(CSP) states which relations hold among the given decision variables.

Constraints are a powerful and natural means of knowledge representation and
reasoning. As an example lets consider the sports league scheduling, where we try to
build the schedule of matches between teams (e.g. football teams). In this problem
various constraints are naturally revealed: i) Each team must play each other exactly
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twice (once home and once away), ii) No team can play more than two consecutive
home or away matches, iii) The number of times that a team plays two consecutive
home or away matches must be minimum, iv) Teams that use the same stadium
cannot play home games at the same date, v) Games between top teams must occur
at certain dates (due to TV coverage).

CSPs can be solved either systematically, as with backtracking, or using forms
of local search which may be incomplete. A backtracking search algorithm performs
a depth-first traversal of a search tree, where the branches out of a node represent
alternative choices that may have to be examined in order to find a solution, and the
constraints are used to prune subtrees containing no solutions. In other words, basic
backtrack search builds up a partial solution by choosing values for variables until
it reaches a dead end, where the partial solution cannot be consistently extended.
When it reaches a dead end it undoes the last choice it made and tries another. This
is done in a systematic manner that guarantees that all possibilities will be tried.
It improves on simply enumerating and testing of all candidate solutions by brute
force in that it checks to see if the constraints are satisfied each time it makes a new
choice, rather than waiting until a complete solution candidate containing values
for all variables is generated. The backtrack search process is often represented as
a search tree, where each node (below the root) represents a choice of a value for a
variable, and each branch represents a candidate partial solution. Discovering that
a partial solution cannot be extended then corresponds to pruning a subtree from
consideration. Backtracking search algorithms come with a guarantee that a solution
will be found if one exists, and can be used to show that a CSP does not have a
solution or to find a provably optimal solution.

When solving a CSP using backtracking search, a sequence of decisions must be
made as to which variable to instantiate next. These decisions are referred to as the
variable ordering decisions. It has been shown that for many problems the choice of
variable ordering can have a dramatic effect on the performance of the backtracking
algorithm with huge variances even on a single instance [13, 23].

A variable ordering can be either static, where the ordering is fixed and deter-
mined prior to search, or dynamic, where the ordering is determined as the search
proceeds. Dynamic variable orderings are considerably more efficient and have thus
received much attention in the literature. One common dynamic variable ordering
strategy, known as “fail-first”, is to select as the next variable the one likely to fail
as quickly as possible. All other factors being equal, the variable with the smallest
number of viable values in its (current) domain will have the fewest subtrees rooted
at those values, and therefore, if none of these contain a solution, the search can
quickly return to a path that leads to a solution.

Recent years have seen the emergence of numerous modern heuristics for choos-
ing variables during CSP search. The so called conflict-driven heuristics exploit
information about failures gathered throughout search and recorded in the form of
constraint weights, while other heuristics measure the importance of variable assign-
ments in reducing the search space. Most of them are quite successful and choosing
the best general purpose heuristic is not easy.

This paper is targeted to readers that are not familiar with CSPs. Initially we
give an extended introduction on this field. Moreover, we have collect and present
the most recent and powerful variable ordering heuristics that have been proposed
in the literature. Our intention is to provide a comprehensive view of the relative
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strengths and weaknesses of these heuristics. We also provide insight as to which
heuristic is preferable as a general purpose variable ordering strategy.

The rest of the paper is organized as follows. Section 2 gives an extended intro-
duction on the constraint satisfaction problems, while Section 3 briefly summarizes
the related work that has been done in variable ordering heuristics. In Section 4 we
make a general discussion on the relative strengths and weaknesses of these heuris-
tics. Finally, conclusions are presented in Section 5.

2 The Constraint Satisfaction Problem

A Constraint Satisfaction Problem (CSP) is a tuple (X, D, C ), where X is a set
containing n variables {x1, x2, ..., xn}; D is a set of domains {D(x1), D(x2),...,
D(xn)} for those variables, with each D(xi) consisting of the possible values which
xi may take; and C is a set of e constraints {c1, c2, ..., ce} between variables in
subsets of X. Each ci ∈ C expresses a relation defining which variable assignment
combinations are allowed for the variables in the scope of the constraint, vars(ci).
Two variables are said to be neighbors if they share a constraint. The arity of a
constraint is the number of variables in the scope of the constraint. The degree of a
variable xi, denoted by Γ (xi), is the number of constraints in which xi participates.
A binary constraint between variables xi and xj will be denoted by cij .

A partial assignment is a set of tuple pairs, each tuple consisting of an instanti-
ated variable and the value that is assigned to it in the current search node. A full
assignment is one containing all n variables. A solution to a CSP is a full assignment
such that no constraint is violated.

In binary CSPs any constraint cij defines two directed arcs (xi,xj) and (xj ,xi).
A directed constraint (xi,xj) is arc consistent (AC) iff for every value a ∈ D(xi)
there exists at least one value b ∈ D(xj) such that the pair (a,b) satisfies cij . In this
case we say that b is a support of a on the directed constraint (xi,xj). Accordingly,
a is a support of b on the directed constraint (xj ,xi). A problem is AC iff there
are no empty domains and all arcs are AC. Enforcing AC on a problem results
in the removal of all non-supported values from the domains of the variables. The
definition of arc consistency for non-binary constraints, usually called generalized
arc consistency (GAC), is a direct extension of the definition of AC. A non-binary
constraint c, with vars(c)={x1, x2, ..., xk}, is GAC iff for every variable xi ∈ vars(c)
and every value a ∈ D(xi) there exists a tuple τ that satisfies c and includes the
assignment of a to xi [16, 15]. In this case τ is a support of a on constraint c. A
problem is GAC iff all constraints are GAC. In the rest of the paper we will assume
that (G)AC is the propagation method applied to all constraints.

Many consistency properties and corresponding propagation algorithms stron-
ger than AC and GAC have been proposed in the literature. One of the most studied
is singleton (G)AC which, as we will explain in the following section, has also been
used to guide the selection process for a certain variable ordering heuristic. A variable
xi is singleton generalized arc consistent (SGAC) iff for each value ai ∈ D(xi), after
assigning ai to xi and applying GAC in the problem, there is no empty domain [9].

A support check (consistency check) is a test to find out if a tuple supports a
given value. In the case of binary CSPs a support check simply verifies if two values
support each other or not. The revision of a variable-constraint pair (c, xi), with
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xi ∈ vars(c), verifies if all values in D(xi) have support on c. In the binary case the
revision of an arc (xi,xj) verifies if all values in D(xi) have supports in D(xj). We
say that a revision is fruitful if it deletes at least one value, while it is redundant if it
achieves no pruning. A DWO-revision is one that causes a domain wipeout (DWO).
That is, it removes the last remaining value(s) from a domain.

Complete search algorithms for CSPs are typically based on backtracking depth-
first search where branching decisions (i.e. variable assignments) are interleaved
with constraint propagation. The most efficient search algorithm that is used in
the main academic and commercial solvers is MGAC (maintaining generalized arc
consistency) or MAC in the case of binary problems [20, 4]. This algorithm can be
implemented using either a d-way or a 2-way branching scheme. The former works
as follows. Initially, the whole problem should be made GAC before starting search.
After the first variable x with domain D(x) = {a1, a2, ..., ad} is selected, d recursive
calls are made. In the first call value a1 is assigned to x and the problem is made
GAC, i.e. all values which are not GAC given the assignment of a1 to x are removed.
If this call fails (i.e. no solution is found), the value a1 is removed from the domain
of x and the problem is made again GAC. Then a second recursive call under the
assignment of a2 to x is made, and so on. The problem has no solution if all d calls
fail. In 2-way branching, after a variable x and a value ai ∈ D(x) are selected, two
recursive calls are made. In the first call ai is assigned to x, or in other words the
constraint x=ai is added to the problem, and GAC is applied. In the second call
the constraint x 6= ai is added to the problem and GAC is applied. The problem
has no solution if neither recursive call finds a solution. The main difference of these
branching schemes is that in 2-way branching, after a failed choice of a variable
assignment (x,ai) the algorithm can choose a new assignment for any variable (not
only x). In d-way branching the algorithm has to choose the next available value for
variable x.

3 Variable ordering heuristics

The order in which variables are assigned by a backtracking search algorithm has
been understood for a long time to be of primary importance. The first category
of heuristics used for ordering variables was based on the initial structure of the
network. These are called static or fixed variable ordering heuristics (SVOs) as they
simply replace the lexicographic ordering by something more appropriate to the
structure of the network before starting search. Examples of such heuristics are min
width which chooses an ordering that minimizes the width of the constraint network
[11], min bandwidth which minimizes the bandwidth of the constraint graph [25],
and max degree (deg), where variables are ordered according to the initial size of
their neighborhood [10].

A second category of heuristics includes dynamic variable ordering heuristics
(DVOs) which take into account information about the current state of the problem
at each point in the search. The first well known dynamic heuristic, introduced by
Haralick and Elliott, was dom [14]. This heuristic chooses the variable with the
smallest remaining domain. The dynamic variation of deg, called ddeg selects the
variable with largest dynamic degree. That is, for binary CSPs, the variable that
is constrained with the largest number of unassigned variables. By combining dom
and deg (or ddeg), the heuristics called dom/deg and dom/ddeg [4, 22] were derived.
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These heuristics select the variable that minimizes the ratio of current domain size to
static degree (dynamic degree) and can significantly improve the search performance.

When using variable ordering heuristics, it is a common phenomenon that ties
can occur. A tie is a situation where a number of variables are considered equivalent
by a heuristic. Especially at the beginning of search, where it is more likely that the
domains of the variables are of equal size, ties are frequently noticed. A common
tie breaker for the dom heuristic is lexico, (dom+lexico composed heuristic) which
selects among the variables with smallest domain size the lexicographically first.
Other known composed heuristics are dom+deg [12], dom+ddeg [6, 21] and BZ3
[21].

Bessière et al. [3], have proposed a general formulation of DVOs which integrates
in the selection function a measure of the constrainedness of the given variable. These
heuristics (denoted as mDVO) take into account the variable’s neighborhood and
they can be considered as neighborhood generalizations of the dom and dom/ddeg
heuristics. For instance, the selection function for variable Xi is described as follows:

H}
a (xi) =

∑
xj∈Γ (xi)

(α(xi) } α(xj))

|Γ (xi)|2
(1)

where Γ (xi) is the set of variables that share a constraint with xi and α(xi)

can be any simple syntactical property of the variable such as |D(xi)| or |D(xi)|
|Γ (xi)|

and

} ∈ {+,×}. Neighborhood based heuristics have shown to be quite promising.
Boussemart et al. [5], inspired from SAT (satisfiability testing) solvers like Chaff

[17], proposed conflict-driven variable ordering heuristics. In these heuristics, every
time a constraint causes a failure (i.e. a domain wipeout) during search, its weight
is incremented by one. Each variable has a weighted degree, which is the sum of
the weights over all constraints in which this variable participates. The weighted
degree heuristic (wdeg) selects the variable with the largest weighted degree. The
current domain of the variable can also be incorporated to give the domain-over-
weighted-degree heuristic (dom/wdeg) which selects the variable with minimum ratio
between current domain size and weighted degree. Both of these heuristics (especially
dom/wdeg) have been shown to be very effective on a wide range of problems.

Grimes and Wallace [24] proposed alternative conflict-driven heuristics that con-
sider value deletions as the basic propagation events associated with constraint
weights. That is, the weight of a constraint is incremented each time the constraint
causes one or more value deletions. They also used a sampling technique called ran-
dom probing where several short runs of the search algorithm are made to initialize
the constraint weights prior to the final run. Using this method global contention,
i.e. contention that holds across the entire search space, can be uncovered.

Inspired by integer programming, Refalo introduced an impact measure with the
aim of detecting choices which result in the strongest search space reduction [19].
An impact is an estimation of the importance of a value assignment for reducing the
search space. Refalo proposes to characterize the impact of a decision by computing
the Cartesian product of the domains before and after the considered decision. The
impacts of assignments for every value can be approximated by the use of averaged
values at the current level of observation. If K is the index set of impacts observed
so far for assignment xi = α, I is the averaged impact:
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I(xi = α) =

∑
k∈K

Ik(xi = α)

|K| (2)

where Ik is the observed value impact for any k ∈ K.
The impact of a variable xi can be computed by the following equation:

I(xi) =
∑

α∈D(xi)

1− I(xi = α) (3)

An interesting extension of the above heuristic is the use of “node impacts” to
break ties in a subset of variables that have equivalent impacts. Node impacts are
the accurate impact values which can be computed for any variable by trying all
possible assignments.

Correia and Barahona [8] proposed variable orderings, by integrating Singleton
Consistency propagation procedures with look-ahead heuristics. This heuristic is
similar to “node impacts”, but instead of computing the accurate impacts, it com-
putes the reduction in the search space after the application of Restricted Singleton
Consistency (RSC) [18], for every value of the current variable. Although this heuris-
tic was firstly introduced to break ties in variables with current domain size equal
to 2, it can also be used as a tie breaker for any other variable ordering heuristic.

Cambazard and Jussien [7] went a step further by analyzing where the reduction
of the search space occurs and how past choices are involved in this reduction. This
is implemented through the use of explanations. An explanation consists of a set of
constraints C′ (a subset of the set C of the original constraints of the problem) and
a set of decisions dc1, ..., dcn taken during search.

Zanarini and Pesant [26] proposed constraint-centered heuristics which guide the
exploration of the search space toward areas that are likely to contain a high number
of solutions. These heuristics are based on solution counting information at the level
of individual constraints. Although the cost of computing the solution counting
information is in general large, it has been shown that for certain widely-used global
constraints, such information can be computed efficiently.

Finally, Balafoutis and Stergiou proposed [2] new variants of conflict-driven
heuristics. These variants differ from wdeg in the way they assign weights. They
propose heuristics that record the constraint that is responsible for any value dele-
tion during search, heuristics that give greater importance to recent conflicts, and
finally heuristics that try to identify contentious constraints by detecting all possi-
ble conflicts after a failure. The last heuristic, called “fully assigned”, increases the
weights of constraints that are responsible for a DWO by one (as wdeg heuristic
does) and also, only for revision lists that lead to a DWO, increases by one the
weights of constraints that participate in fruitful revisions (revisions that delete at
least one value). Hence, this heuristic records all variables that delete at least one
value during constraint propagation and if a DWO is detected, it increases the weight
of all these variables by one.

4 General Discussion

The heuristics described in the previous section can be divided into two different
strategies: i) heuristics that exploit information about failures gathered throughout
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search and recorded in the form of constraint weights (conflict-driven heuristics) and
ii) heuristics that measure the importance of variable assignments in reducing the
search space (impact based heuristics).

In the first strategy belongs the wdeg and dom/wdeg heuristics from [5], the
random probing heuristics from [24] and the fully assigned from [2]. In the second
strategy belongs the impact based heuristics from [19] and its variants from [8].

In a recent work [1] where all these heuristics have been tested experimentally,
results have shown that the best general purpose variable ordering heuristic is the
dom/wdeg. The main advantage that this heuristic have, is the ability to learn from
failures during search with a low computational cost.

In order to get a graphical view of the relative performance between dom/wdeg
and the Impact heuristic, we present two figures. In these figures we have included
cpu time and number of visited nodes for the dom/wdeg heuristic and we have
compared it graphically to the Impact heuristic (which has the best performance
among the impact based heuristics).

The results are from a well known real world problem called RLFAP (Radio Link
Frequency Assignment Problem). This problem is the task of assigning frequencies
to a number of radio links so that a large number of constraints are simultaneously
satisfied and as few distinct frequencies as possible are used.

Results are collected in Figure 1. The left plot in this figure correspond to cpu
time and the right plot to visited nodes. Each point in these plots, shows the cpu
time (or nodes visited) for one instance from all the tested RLFAPs. The y-axes
represent the solving time (or nodes visited) for the Impact heuristic and the x-
axes the corresponding values for the dom/wdeg heuristic (Figures (a) and (b)).
Therefore, a point above line y = x represents an instance which is solved faster (or
with less node visits) using dom/wdeg heuristic. Both axes are logarithmic.

As we can clearly see from Figure 1 (left plot), dom/wdeg heuristic is almost
always faster. Concerning the numbers of visited nodes, the right plots do not reflect
an identical performance. Although it seems that in most cases dom/wdeg is making
a better exploration in the search tree, there is a considerable set of instances where
the Impact heuristic visit less nodes.

The main reason for this variation in performance (cpu time versus nodes visited)
that the impact heuristic has, is the time consuming process of initialization. The
idea of detecting choices which are responsible for the strongest domain reduction is
quite good. This is verified by the left plot of Figure 1. But the additional computa-
tional overhead of computing the “best” choices, really affect the overall performance
of the impact heuristic (Figure 1, right plot). As our experiments showed the impact
heuristic cannot handle efficiently problems which include variables with relatively
large domains. For example in the RLFA problems where we have 680 variables with
at most 44 values in their domains.

On the other hand in other problem classes where variables have only a few
values in their domains (as in the Boolean instances where variables have only two
values in their domains) the impact heuristic is quite competitive.

5 Conclusions

In this paper we make an extended introduction on the Constraint Satisfaction
Problems, for readers that are not familiar with this filed. Moreover, we have collect
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(a) (b)

Fig. 1. A summary view of run times (left figure) and nodes visited (right figure),
for dom/wdeg and impact heuristics (figures (a),(b)).

and present the most recent and powerful variable ordering strategies that are used
in order to boost search in constraint satisfaction problems. These heuristics can
be divided in two main categories: heuristics that exploit information about fail-
ures gathered throughout search and recorded in the form of constraint weights and
heuristics that measure the importance/impact of variable assignments for reduc-
ing the search space. In general heuristics based on failures have much better cpu
performance. Although impact based heuristics are in general slow, there are some
cases where they perform a smarter exploration of the search tree resulting in fewer
node visits.
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