On Conflict-driven variable ordering heuristics

Thanasis Balafoutis and Kostas Stergiou

Department of Information and Communication Systems Engineering
University of the Aegean, Samos, Greece
email: {abalafoutis,konsterg}@aegean.gr

Abstract. It is well known that the order in which variables are in-
stantiated by a backtracking search algorithm can make an enormous
difference to the search effort in solving CSPs. Among the plethora of
heuristics that have been proposed in the literature to efficiently order
variables during search, a significant recently proposed class uses the
learning-from-failure approach. Prime examples of such heuristics are
the wdeg and dom/wdeg heuristics of Boussemart et al. which store and
exploit information about failures in the form of constraint weights. The
efficiency of all the proposed conflict-directed heuristics is due to their
ability to learn though conflicts encountered during search. As a result,
they can guide search towards hard parts of the problem and identify
contentious constraints. Such heuristics are now considered as the most
efficient general purpose variable ordering heuristic for CSPs. In this pa-
per we show how information about constraint weights can be used in
order to create several new variants of the wdeg and dom/wdeg heuris-
tics. The proposed conflict-driven variable ordering heuristics have been
tested over a wide range of benchmarks. Experimental results show that
they are quite competitive compared to existing ones and in some cases
they can increase efficiency.

1 Introduction

Constraint satisfaction problems (CSPs) and propositional satisfiability (SAT)
are two automated reasoning technologies that have a lot in common regarding
the approaches and algorithms they use for solving combinatorial problems. Most
complete algorithms from both paradigms use constraint propagation methods
together with variable ordering heuristics to improve search efficiency. Learning
from failure has become a key component in solving combinatorial problems in
the SAT community, through clause learning and weighting, e.g. as implemented
in the Chaff solver [18]. This approach is based on learning new clauses through
conflict analysis and assigning weights to clauses based on the number of times
they cause a failure during search. This information can be then exploited by
the variable ordering heuristic to efficiently choose the variable to assign at each
choice point. Following the pioneering work of [18], numerous such heuristics
have been proposed in the SAT literature [13,17,20,9].

In the CSP community, learning from failure has followed a similar direction
in recent years, in particular with respect to novel variable ordering heuristics.

Boussemart et al. were the first to introduce SAT influenced heuristics that
learn from conflicts encountered during search [5]. In their approach, constraint
weights are used as a metric to guide the variable ordering heuristic towards hard
parts of the problem. Constraint weights are continuously updated during search
using information learned from failures. The advantage that these heuristics
have is that they use previous search states as guidance, while most formerly
proposed heuristics either use the initial or the current state. The heuristics of
[5], called wdeg and dom /wdeg, are now probably considered as the most efficient
general purpose variable ordering heuristic for CSPs. Sunsequently, a number of
alternative heuristics based on learning during search were proposed [19,7, 14].

As discussed by Grimes and Wallace, heuristics based on constraint weights
can be conceived in terms of an overall strategy that except from the standard
Fail-First Principle also obeys the Contention Principle, which states that vari-
ables directly related to conflicts are more likely to cause a failure if they are
chosen instead of other variables [14]. x

In this paper we focus on conflict-driven variable ordering heuristics based on
constraint weights. After a recall on the existing heuristics for CSPs and a brief
discussion on their efficiency, we concentrate on an investigation of new general
purpose variants of conflict-driven heuristics. These variants differ from wdeg and
dom/wdeg in the way they assign weights to constraints. First we propose three
new variants of the wdeg and dom/wdeg heuristics that record the constraint that
is responsible for any value deletion during search. These heuristics then exploit
this information to update constraint weights uppon detection of failure. We also
examine a SAT influenced weight aging strategy that gives greater importance to
recent conflicts. Finally, we propose a new heuristic that tries to better identify
contentious constraints by detecting all the possible conflicts after a failure.
Experimental results from various random, academic and real world problems
show that some of the proposed heuristics are quite competitive compared to
existing ones and in some cases they can increase efficiency.

The rest of the paper is organized as follows. Section 2 gives the necessary
background material and an overview on the existing variable ordering heuris-
tics. In Section 3 we propose several new general purpose variants of conflict-
driven variable ordering heuristics. In Section 4 we experimentally compare the
proposed heuristics to dom/wdeg on a variety of real, academic and random
problems. Finally, conclusions are presented in Section 5.

2 Background

A Constraint Satisfaction Problem (CSP) is a tuple (X, D, C'), where X is a set
containing n variables {z1, T2, ...,z,}; D is a set of domains {D(z1), D(z2),...,
D(z,)} for those variables, with each D(x;) consisting of the possible values
which z; may take; and C is a set of constraints {cy, ca, ..., cx } between variables
in subsets of X. Each ¢; € C expresses a relation defining which variable as-
signment combinations are allowed for the variables vars(c;) in the scope of the
constraint. Two variables are said to be neighbors if they share a constraint. The

arity of a constraint is the number of variables in the scope of the constraint.
The degree of a variable x;, denoted by I'(z;) , is the number of constraints in
which x; participates. A binary constraint between variables x; and x; will be
denoted by c¢;;. In this paper we focus on binary CSPs. However, the proposed
variable ordering heuristics are generic and can be applied on problems with
constraints of any arity.

A partial assignment is a set of tuple pairs, each tuple consisting of an instan-
tiated variable and the value that is assigned to it in the current search state.
A full assignment is one containing all n variables. A solution to a CSP is a full
assignment such that no constraint is violated.

An arc is a pair (c,z;) where z; € vars(c). As we focus on binary CSPs,
any arc (c;;,x;) will be alternatively denoted by the pair of variables (x;,z;),
where x; € vars(c;;). That is, x; is the other variable involved in ¢;;. An arc
(xi,z5) is arc consistent (AC) iff for every value a € D(x;) there exists at least
one value b € D(z;) such that the pair (a,b) satisfies ¢;;. In this case we say
that b is a support of a on arc (z;,x;). Accordingly, a is a support of b on arc
(xj,z;). A problem is AC iff there are no empty domains and all arcs are AC.
The application of AC on a problem results in the removal of all non-supported
values from the domains of the variables. A support check (consistency check) is
a test to find out if two values support each other. The revision of an arc (x;,z;)
using AC verifies if all values in D(x;) have supports in D(z;). A DWO-revision
is one that causes a DWO. That is, it results in an empty domain.

In the following will use MAC (maintaining arc consistency) [21, 3] as our
search algorithm. In MAC a problem is made arc consistent after every as-
signment, i.e. all values which are arc inconsistent given that assignment, are
removed from the current domains of their variables. If during this process a
domain wipeout (DWO) occurs, then the last value selected is removed from the
current domain of its variable and a new value is assigned to the variable. If no
new value exists then the algorithm backtracks.

2.1 Overview of existing variable ordering heuristics

The order in which variables are assigned by a backtracking search algorithm has
been understood to be of prime importance for a long time. The first category
of heuristics used for ordering variables were based on the initial structure of
the network. They are called static or fixed variable ordering heuristics (SVOs)
as they keep the same ordering of the variables during search. Examples of such
heuristics are lexico where variables are ordered lexicographically, min width
which chooses an ordering that minimizes the width of the constraint network
[10], min bandwidth which minimizes the bandwidth of the constraint graph [25],
and min degree (deg), where variables are ordered according to the initial size
of their neighborhood [8].

A second category of heuristics includes dynamic variable ordering heuris-
tics (DVOs) which take into account information about the current state of the
problem at each point in search. The first well known dynamic heuristic, intro-
duced by Haralick and Elliott, was dom [15]. This heuristic chooses the variable

with the smallest remaining domain. The dynamic variation of deg, callled ddeg
selects the variable with largest dynamic degree. That is, the variable that is
constrained with the largest number of unassigned variables. By combining dom
and deg (or ddeg), the heuristics called dom/deg and dom/ddeg [3,23] were de-
rived. These heuristics select the variable that minimizes the ratio of current
domain size to static degree (dynamic degree) and can significantly improve
the search performance. Other dynamic heuristics, based on measures such as
the constrainedness of the problem, include the ones proposed in [12, 16]. These
heuristics, although conceptually elegant, require extra computation and have
only been tested on random problems.

When using variable ordering heuristics, it is a common phenomenon that
ties can occur. A tie is a situation where a number of variables are considered
equivalent by a heuristic. Especially at the beginning of search, where it is more
likely that the domains of the variables are of equal size, ties are frequently
noticed. A common tie breaker for the dom heuristic is lezico, (dom+lexico com-
posed heuristic) which selects among the variables with smallest domain size
the lexicographically first. Other known composed heuristics are dom+deg [11],
dom+ddeg [6,22] and BZ3 [22].

Bessiére et al. [2], have proposed a general formulation of DVOs which in-
tegrates in the selection function a measure of the constrainedness of the given
variable. These heuristics (denoted as mDVO) take into account the variable’s
neighborhood and they can be considered as neighborhood generalizations of the
dom and dom/ddeg heuristics. For instance, the selection function for variable
X is described as follows:

e (@(z) © a(z;))
S @

HY () =

where «a(z;) can be any simple syntactical property of the variable such as

|D(z;)| or l\jl?g))ll and ® € {+, x}. Neighborhood based heuristics have shown

to be quite promising.

Recently, Boussemart et al. [5] proposed conflict-directed variable ordering
heuristics. In these heuristics, every time a constraint causes a failure (i.e. a
domain wipeout) during search, its weight is incremented by one. Each variable
has a weighted degree, which is the sum of the weights over all constraints in
which this variable participates. The weighted degree heuristic (wdeg) selects
the variable with the largest weighted degree. The current domain of the vari-
able can also be incorporated to give the domain-over-weighted-degree heuristic
(dom/wdeg) which selects the variable with minimum ratio between current do-
main size and weighted degree. Both of these heuristics (especially dom/wdeg)
have been shown to be extremely effective on a wide range of problems.

Grimes and Wallace [14] proposed alternative conflict-driven heuristics that
consider value deletions as the basic propagation events associated with con-
straint weights. That is, the weight of a constraint is incremented each time
the constraint causes one or more value deletions. They also used a sampling

technique called random probing with which they can uncover cases of global
contention, i.e. contention that holds across the entire search space.

Inspired from integer programming, Refalo introduced an impact measure
with the aim of detecting choices which result in the strongest search space re-
duction [19]. An impact is an estimation of the importance of a value assignment
for reducing the search space. He proposes to characterize the impact of a de-
cision by computing the Cartesian product of the domains before and after the
considered decision.

Finally, Cambazard and Jussien [7] go a step further by analyzing where the
reduction of the search space occurs and how past choices are involved in this
reduction. This is implemented through the use of explanations. An explanation
consists of a set of constraints C’ (a subset of the set C of the original con-
straints of the problem) and a set of decisions decy, ..., dc,, taken during search.
An explanation of the removal of value a from variable v can be written as:

C'Ndey Ndeg A ... Nde, = v #a

3 Heuristics based on weighting constraints

As stated in the previous section, the wdeg and dom/wdeg heuristics associate
a counter, called weight, with each constraint of a problem. These counters are
updated during search whenever a DWO occurs. If, for example, the MAC algo-
rithm is used for systematic search and AC-3 is maintained at every step, a DWO
for a variable x; will be identified inside the revise procedure of Algorithm 1. In
line 7, the weight of variable z; will be increased by one, each time a DWO is
detected.

Algorithm 1 REVICE-3(z;, ;) : boolean

1: for each a € D(z;) do

2 if @ € D(z;) such that ¢;;(a,b) then
3 delete a from D(z;)

4 end if

5: end for
6
7
8
9

: if D(x;) = 0 then
: weight[ci;] + +
: end if

: return D(z;) # 0

Although experimentally it has been shown that these heuristics are ex-
tremely effective on a wide range of problems, in theory it seems quite plau-
sible that they may not always assign weights to constraints in an accurate way.
This has been noticed by Grimes and Wallace who proposed alternative heuris-
tics that increase the weight of a constraint whenever is causes value deletions.
However, the obtained heuristics did not demonstrate any advantage compared

to dom/wdeg in practice [14]. To better illustrate our conjencture about the
accuracy in assignning weights to constraints, we give the following example.

Ezample 1. Assume we are using MAC-3 (i.e. MAC with AC-3) to solve a CSP
(X, D, C) where X includes, among others, the three variables {z;,z;,xy}, all
having the same domain {a,b,c,d, e}, and C includes, among others, the two
binary constraints c¢;;, ¢;x. Also assume that a conflict-driven variable ordering
heuristic (e.g. dom/wdeg) is used, and that at some point during search AC
tries to revise variable x;. That is, it tries to find supports for the values in
D(z;) in the constraints where x; participates. Suppose that when z; is revised
against ¢;;), values {a,b, c,d} are removed from D(z;) (i.e. they do not have a
support in D(z;)). Also suppose that when ; is revised against c;i, value {e} is
removed from D(z;) and hence a DWO occurs. Then, the dom/wdeg heuristic
will increase the weight of constraint c;; by one but it will not change the weight
of Cij-

It is obvious from this example that although constraint c;; removes more
values from D(z;) than c¢;;, its important indirect contribution to the DWO is
ignored by the heuristic. In contrast, note that the alldel heuristic of [14] will
indeed increase the weight of constraint c;; as soon as this constraint deletes
values from D(x;).

A second point regarding potential inefficiencies of wdeg and dom/wdeg has
to do with the order in which revisions are made by the AC algorithm used.
Coarse-grained AC algorithms, like AC-3, use a revision list of arcs, variables,
or constraints, depending on the implementation, to propagate the effects of
variable assignments. It has been shown that the order in which the elements
of the list are selected for revision affects the overall cost of search. Hence a
number of revision ordering heuristics have been proposed [24,4]. In general,
revision ordering and variable ordering heuristics have different tasks to perform
when used in a search algorithm like MAC. Before the appearance of conflict-
driven heuristics there was no way to achieve an interaction with each other, i.e.
the order in which the revision list was organized during the application of AC
could not affect the decision of which variable to select next (and vice versa). The
contribution of revision ordering heuristics to the solver’s efficiency was limited
to the reduction of list operations and constraint checks.

However, when a conflict-driven variable ordering heuristic like dom/weg is
used, then there are cases where the decision of which arc (or variable) to revise
first can affect the variable selection. To better illustrate this interaction we give
the following example.

Ezample 2. Assume that we want to solve a CSP (X, D,C) using a conflict-
driven variable ordering heuristic (e.g. dom/wdeg), and that at some point dur-
ing search the following AC revision list is formed: Q={(z1), (z3), (x5)}. Suppose
that revising x; against constraint ¢ leads to the DWO of D(z;), i.e. the re-
maining values of z1 have no support in D(x5). Suppose also that the revision of
x5 against constraint csg leads to the DWO of D(z5), i.e. the remaining values
of x5 have no support in D(zg). Depending on the order in which revisions are

performed, one or the other between the two possible DWOs will be detected.
If a revision ordering heuristic R; selects x; first then the DWO of D(x;) will
be detected and the weight of constraint cio will increased by 1. If some other
revision ordering heuristic Rg selects x5 first then the DWO of D(x5) will be de-
tected, but this time the weight of a different constraint (cs6) will increased by 1.
Although the revision list includes two variables (1, x5) that can cause a DWO,
and consequently two constraint weights can be increased (c12, ¢56), dom/wdeg
will increase the weight of only one constraint depending on the choice of the
revision heuristic. Since constraint weights affect the choices of the variable or-
dering heuristic, R; and Ry can lead to different future decisions for variable
instantiation. Thus, R; and Rs may guide search to different parts of the search
space.

From the above example it becomes clear that known heuristics based on
constraint weights are quite sensitive to revision orderings and their performance
can be affected by them.

In order to overcome the above described weaknesses that the weighted degree
heuristics seem to have, we next describe a number of new variable ordering
heuristics which can be seen as variants of wdeg and dom/weg.

3.1 Constraints responsible for value deletions

The first enhancement to wdeg and dom/wdeg tries to alleviate the problem
illustrated in Example 1. To achieve this, we propose to record the constraint
which is responsible for each value deletion from any variable in the problem. In
this way, once a DWO occurs during search we know which constraints have, not
only directly, but also indirectly contributed to the DWO. Based on this idea,
when a DWO occurs in a variable x;, constraint weights can be updated in the
following three alternative ways:

— for every constraint that is responsible for any value deletion from D(z;), we
increase its weight by one.

— for every constraint that is responsible for any value deletion from variable
D(x;), we increase its weight by the number of value deletions.

— for every constraint that is responsible for any value deletion from variable
D(x;), we increase its weight by the normalized number of value deletions.
That is, by the ratio between the number of value deletions and the size of

The new variable ordering heuristics derived will be referred to as H1, H2 and
H3 respectively. Using these alternative ways to increase constraint weights, we
can compute the weighted degree of any variable x; as in [5] using the following
equation:

Qpdeg(T;) = ZweightH17H27H3[C]|vars(C) Sx; AN|FutVars(C)| >1 (2)

where FutVars(C) denotes the uninstantiated variables in vars(C). The cur-
rent domain of the variable can also be incorporated to give the heuristics:

dom/wdegg, dom/wdeggs and dom/wdeggs. The way in which the new heuris-
tics update constraint weights is displayed in the following example.

Ezample 3. Assume that when solving a CSP (X, D, C), the domain of some
variable e.g. 27 is wiped out. Suppose that D(x;) initially was {a,b,c,d, e}
and each of the values was deleted because of constraints: {c;2, ¢12, ¢13, €12, 13}
respectively. The proposed heuristics will assign constraint weights as follows:
H1(weightm[c12] = weight[cis] = 1), H2(weight galcia] = 3, weight ga|cis] =
2) and H3(weights[ci2] = 3/5, weightyslciz] = 2/5)

Heuristics H1, H2, H3 are closely related to the three heuristics proposed
by Grimes and Wallace [14]. The heuristics of [14] work as follows:

— constraint weights are increased by the size of the domain reduction leading
to a DWO.

— whenever a domain is reduced in size during constraint propagation, the
weight of the constraint involved is incremented by 1.

— whenever a domain is reduced in size, the constraint weights are increased
by the size of domain reduction.

The last two heuristics record constraints responsible for value deletions and
use this information to increase weights. However, the weights are increased dur-
ing constraint propagation in each value deletion for all variables. Our proposed
heuristics differ by increasing constraints weights only when a DWO occurs. As
discussed in [14], DWOs seem to be particularly important events in helping
identify hard parts of the problem. Hence we focus on information derived from
DWOs and not just any value deletion.

Algorithm 2 describes the implementation of the modified revision function
for AC-3, depicting the new proposed heuristics. The two-dimensional table re-
sponsible Constraint in used to record the constraint which is responsible for any
value deletion (line 4). In line 8, we show how the three alternative heuristics
can increase constraint weights.

3.2 Constraint weight aging

Most of the state-of-the-art SAT solvers like BerkMin [13] and Chaff [18], use the
strategy of weight ”aging”. In such solvers, each variable is assigned a counter
that stores the number of clauses responsible for at least one conflict . The value
of this counter is updated during search. As soon as a new clause responsible for
the current conflict is derived, the counters of the variables, whose literals are in
this clause, are incremented by one. The values of all counters are periodically
divided by a small constant greater than 1. This constant is equal to 2 for Chaff
and 4 for BerkMin. In this way, the influence of ”aged” clauses is decreased and
preference is given to recently deduced clauses.

Inspired from SAT solvers, we propose here the use of ”aging” to periodi-
cally age constraint weights. As in SAT, constraint weights can be ”"aged” by

Algorithm 2 newRevicey (x;, ;) : boolean

1: for each a € D(z;) do

2 if @ € D(z;) such that ¢;;(a,b) then
3 delete a from D(z;)

4: responsibleConstraint|[z;][a] = ¢;;
5: end if
6
7
8

: end for
: if D(x;) = 0 then
V ci; € responsibleConstraint|[z;|[D(z;)] weight[c;;] + + //H1 heuristic
for each a € D(x;)
weight[resposibleConstraint[xz;][a]] + + // H2 heuristic
weightresponsibleConstraint|x;|[a]]+ = 1/sizeof (D(z;)) // H3 heuristic
end for
9: end if
10: return D(x;) #

periodically dividing their current value by a constant greater than 1. The pe-
riod of divisions can be set according to a specified number of backtracks during
search. With such a strategy we give greater importance to recently discovered
conflicts. The following example illustrates the improvement that weight ”aging”
can contribute to the solver’s performance.

Ezample 4. Assume that in a CSP (X, D, C) with D={0,1,2}, we have a ternary
constraint ¢35 € C for variables x1, x9, x3 with disallowed tuples {(0,0,0), (0,0,1),
(0,1,1), (0,2,2)}. When variable x; is set to a value different from 0 during search,
constraint cyo3 is not involved in a conflict and hence its weight will not increase.
However, in a branch that includes assignment xy = 0, constraint ci23 becomes
highly ”active” and a possible DWO in variable x5 or g should increase the
importance of constraint c¢j23 (more that a simple increment of its weight by
one). We need a mechanism to quickly adopt changes in the problem caused
by a value assignment. This can be done, by ”aging” the weights of the other
previously active constraints.

Aging constraint weights can be used in conjunction with any of the newly
proposed heuristics and any alternative aging strategy can be followed.

3.3 Fully assigned weights

When arc consistency is maintained during search using a coarse grained algo-
rithm like AC-3, a revision list is created after each variable assignment. This
list consists of variables, arcs, or constraints, depending on the particular im-
plementation of the AC algorithm. Hereafter we assume a variable-oriented im-
plementation which is the most efficient alternative [4]. The variables that have
been inserted into the list are removed and revised in turn. The revision process
stops either if the list becomes empty or if a DWO is detected. When the latter
situation occurs for some variable z;, a weighted-based heuristic like dom/wdeg

will increase the weight of the constraint that was responsible for the wipeout of
D(z;), and search will continue by backtracking to the most recent choice point.
Any variable that remained in the revision list pending revision will be discarded,
and a new revision list will be created after the next variable assignment is made.

However, it is possible that some of the remaining variables in the revision
list would also cause a DWO if they were selected for revision before z; i.e.,
through the use of a different revision ordering heuristic. This leads to a natural
presumption that constraints weights are not always fully assigned. That is,
each time a DWO occurs when AC is applied during search, only one constraint
weight is increased, whereas plausibly, more than one constraint could lead to
the DWO. To better illustrate this situation, consider again Example 2 where
there are two DWO-revisions in the revision list but only one is detected, and
as a result, the weight of only one constraint is incremented.

The question here is how to identify any additional DWO-revisions and con-
sequently increase more than one constraint weight in each call to AC. Is this
possible, considering that the variable revisions stop after the first DWO-revision
is encountered? We propose here a mechanism that fully assigns weights to all
constraints that are potentially responsible for DWOs.

When the first DWO-revision is detected in the revision list, we increase
the weight of the responsible constraint by one and then we ”freeze” the search
procedure and we "undo” the deletions that this revision has made. Then, we
continue by revising the remaining variables that are still in the revision list,
until the next DWO-revision is identified or the revision list is emptied. If a new
DWO-revision is detected, we increase the appropriate constraint weight and
"undo” the last value deletions. This process continues until the revision list
becomes empty. After that, we "redo” the deletions of the first DWO-revision
detected and we continue search by instantiating the next appropriate variable.

Although this heuristic theoretically seemed to be promising, its experimen-
tal behavior was not the expected. Experiments on a wide variety of real world
problems showed that the variables that remains in the revision list after the
detection of the first DWO are very ulikely to cause a new DWO. After a sta-
tistical analysis on many real problems we observed that on average, the 96.5%
of the revisions are redundant (they achieve no pruning), the 3.3% are fruitful
(they delete at least one value) and only the 0.2% are DWO revisions. Thus, in
practice we can say that is almost impossible to identify a second DWO in a
revision list.

However, it is also observed that in the same revision list, different revi-
sion ordering heuristics can lead to the DWOs of different variables. To better
illustrate this, we give the following example.

Example 5. Assume that we use two different revision ordering heuristic Ry, Ro
to solve a CSP (X, D, C), and that at some point during search the following AC
revision list is formed for Ry and Ry. Ry1:{X1,X52}, Ra:{X52,X1}. We also assume
the following: a) The revision of X; deletes some values from the domain of X3
and it causes the addition of the variable X3 in the revision list. b) The revision
of X, deletes some values from the domain of X5 and it causes the addition of

the variable X4 in the revision list. ¢) The revision of X3 deletes some values
from the domain of X;. d) The revision of X, deletes some values from the
domain of X5. e¢). A DWO occurs after a sequential revision of X3 and X;. f)
A DWO occurs after a sequential revision of X, and Xs,. Considering the R,
list, the revision of X is fruitful and adds X3 in the list (Rq:{X3,X1}). The
sequential revision of X3 and X; leads to the DWO of X;. Considering the R,
list, the revision of X5 is fruitful and adds X, in the list (Ro:{X4,X2}). The
sequential revision of X4 and X5 leads to the DWO of X5.

From the above example it is clear that although only one DWO is identified
in a revision list, both X7 and X5 can be responsible for this. In R; where X7 is
the DWO variable, we can say that X5 is also a ”"potential” DWO variable i.e.
it would be a DWO variable, if the Ry revision ordering was used. The question
that arises here is: how can we identify the "potential” DWO variables that
exists on a revision list? A first observation that can be helpful in answering this
question is that ”potential” DWO variables are among variables that participate
in fruitful revisions.

Based on this observation, we propose here a new conflict-driven variable
ordering heuristic that takes into account the ”potential” DWO variables. This
heuristic increases the weights of constraints that are responsible for a DWO by
one (as wdeg heuristic does) and also, only for revision lists that lead to a DWO,
increases by one the weights of constraints that particpates in fruitful revisions.
Hence, to implement this heuristic we record all variables that delete at least
one value during the application of AC. If a DWO is detected, we increase the
weight of all these variables.

An interesting direction for future work can be a more selective identification
of "potential” DWO variables.

4 Experiments and results

In this section we experimentally investigate the behavior of the new proposed
variable ordering heuristics on several classes of real, academic and random prob-
lems. All benchmarks are taken from C. Lecoutre’s web page!. We compare the
heuristics with dom/wdeg, one the most efficient general purpose heuristics. Re-
garding the heuristics of Section 3.1, we only show results from dom/wdegp1,
dom/wdegp2 and dom/wdegps, denoted as H1, H2 and H3 for simplicity, which
are more efficient than the corresponding versions that do not take the domain
size into account. In our tests we have used the following measures of perfor-
mance: cpu time in seconds (t) and number of visited nodes (n). The solver we
used applies d-way branching and lexicographic value ordering. It also employs
restarts. Concerning the restart policy, the initial number of allowed backtracks
for the first run has been set to 10 and at each new run the number of allowed
backtracks increases by a factor of 1.5. Regarding heuristics that employ weight

! http://www.cril.univ-artois.fr/~lecoutre/research /benchmarks/

aging, we have select to periodically decrease all constraint weights by a factor
of 2, with the period set to 20 backtracks.

Our search algorithm is MAC-3, denoting MAC with AC-3, coupled with a
variable-oriented propagation scheme. Concerning revision ordering inside AC-
3, we have used the efficient dom/wdeg heuristic proposed in [1]. This heuristic
selects first for revision the variable having the smallest ratio between current
domain size and weighted degree among the variables in the revision list.

Table 1. Cpu times (t), and nodes (n) from frequency allocation problems. Best cpu
time is in bold. The names of heuristics that employ aging are preceded by ‘a’.

Instance dom/wdeg| H1 H?2 H3 |adom/wdeg| aH1 | aH2 | aH3 | fullyAssigned

scen2-25 |t 6,2 59 | 6,4 5,3 5,2 6,2 7,2 | 5,2 5,5
n 1905 2031 | 2187 | 1724 1637 2030 | 2240 | 1724 1339

scen3-f10 |t 1,8 1,6 | 1,2 2 2 1,8 | 1,2 | 2,1 1,3
n 567 562 | 470 623 595 574 | 470 | 623 463

scen3-f11 |t 5,1 5 4 3,8 3,7 6,5 | 4,2 4 12,7
n 1025 990 | 799 737 671 1301 | 806 | 737 2158

scenll t 4,2 4 4,2 6,4 5,5 4,3 | 44 | 6,2 4,6
n 830 830 | 831 | 1069 902 804 | 831 | 1013 807

scenll-f11 |t 3,5 3,7 | 4,1 3,5 2,8 4,1 4 3,7 6
n 646 709 | 699 716 479 708 | 728 | 696 934

scenll-f10 |t 3,6 3,8 3,8 3,8 2,8 4 4,1 3,7 4,6
n 674 714 | 743 685 467 717 | 770 | 726 722

scenll-f9 |t 10,2 10,5 | 11 10,3 9 11,9 | 12,3 | 10,9 13,7
n 1664 1781 | 1764 | 1706 1346 1753 | 1770 | 1729 1733

scenll-f8 [t 17,2 17,3 | 17,9 | 18,2 20,4 18,6 | 19,2 | 17,6 21
n 2695 2702 | 2758 | 2753 2830 2699 | 2780 | 2729 2766
graph8-f10 [t 25,3 75,6 | 18,4 | 25,2 19,9 26,8 | 26 | 25,3 7,3
n 8386 22452| 5618 | 8070 5506 8121 | 7907 | 8070 2321
graph8-f11 [t 3,7 2,3 | 0,9 4,7 2,8 2,1 | 0,9 | 4,6 1
n 1025 542 | 144 | 1073 720 441 | 144 | 1073 137
graphl14-f27|t 41,1 39 | 28,3 41 93,7 76,7 | 193 | 41,3 24,8
n| 23818 |21792|15721| 23818 48512 34299|88846|23818 14315
graph14-f28|t 50,1 51,5 | 19,3 | 321,2 48,5 2,7 61,6 [135,5 2,3
n| 24944 |24958| 9577 [162707 19353 982 |29338|61165 857

Table 1 shows results from some real world RLFAP instances. The Radio Link
Frequency Assignment Problem (RLFAP) is the task of assigning frequencies to
a number of radio links so that a large number of constraints are simultaneously
satisfied and as few distinct frequencies as possible are used. A number of mod-
ified RLFAP instances have been produced from the original set of problems
by removing some frequencies (denoted by f followed by a value). For example,
scenl1-f8 corresponds to the instance scenll for which the 8 highest frequen-
cies have been removed. Results from Table 1 show that the proposed heuristics
display in general a slightly better performance than dom/wdeg, which achieves
the best cpu time only on instance scenll-f8. The strategy of aging constraint
weights increases the solver’s efficiency in almost all cases. The "aged” version of
the dom/wdeg heuristic achieves the best cpu time in five instances and heuristic
H2 in four instances. The ”fully assigned” heuristic has a better performance on
graph instances.

Table 2. Results from structured problems. Best cpu time is in bold.

Instance dom/wdeg| H1 H2 H3 |adom/wdeg| aH1 | aH2 | aH3 |fullyAssigned
driver5c [t| 2,3 I8 | 1,6 | 3.1 1,4 1,3 | 1,3 | 44 1
n 1163 952 837 1654 805 658 700 955 448
driver-8c [t 3 72 | 5.4 | 12,7 1.6 2,9 1 3.8 15
n 3895 2370 | 1769 | 3954 1042 952 1070 1101 891
driver-8ce [t| 15,2 68 | 7.1 9 15 I8 | 2,7 | 44 3.8
n 4413 2043 | 2176 | 2659 1126 1235 867 1061 850
driver:9 [t| 64,4 30,1 | 27,8 | 102,8 | 1884 16,5 | 66,6 | 2158 1,1
n 10917 5272 | 4821 | 16169 15589 4998 | 6056 | 16873 4163
Tangford2-9 |t| 40,4 | 43,3 | 48,3 | 47,7 60,0 523 | 53,1 | 51,7 60,5
n 58203 70635 | 62502 | 62183 80483 79715 | 65950 | 64965 74328
Tangford2-10[t| 262,0 | 284,2 | 345,8 | 335,7 | 424,2 | 366,5 | 360,1 | 350 3842
n| 306263 ([367680(321641|319070 421494 410258333286 (343049 385933
Tangford3-10[¢] 7,9 3 | 35 5 2.9 21,7 | 23 | 1,9 20,1
n 2439 4345 773 1548 709 6452 495 458 4768
Tangford3-11t| 540,1 |462,9| 625,5 | 594,2 593 559,2 | 590,9 | 595.3 755.6
n 96567 109834(102374(101758 99675 120757(109700|{110155 161341
langford4-10|t 42,8 42 43,5 30,7 60,5 46 50,9 49,9 51,3
n 3846 4164 | 2978 | 2978 3661 4219 | 3001 | 2993 4240

In Table 2 we present results from structured instances belonging to bench-
mark classes driver and langford, while in Table 3 we give results from instances
of the graph coloring problem. The results are similar to the ones from RLFAPs
shown in Table 1. We must notice here that the advantage of heuristics that
employ aging observed in Table 1 is not generic. Results in Table 2 show that
aging constraint weights does not always lead to better performance. Especially
the ”aged” version of the dom/wdeg heuristic, which has a good performance in
the RLFAP instances, does not achieve the best cpu time performance in any of
the instances given in Table 2. We must also comment that in driver instances
the " fully assigned” heuristic visits less nodes than all the other heuristics.

Table 3. Results from graph coloring problems. Best cpu time is in bold.

Instance dom/wdeg| H1 H?2 H3 |adom/wdeg| aH1 | aH2 H3 |fullyAssigned

myciel6-4 |t| 10,5 10,6 | 10,7 | 10,9 11,6 15 15,2 | 15,2 12,1
n| 10150 11273 | 11273 | 11122 11208 16396 | 16396 | 16163 7629
myciel7-4 [t 22,6 32 30,3 | 42,5 27,9 33,8 | 33,7 | 65,3 46,1
n 6994 11059 | 11059 | 15396 8250 10995 | 10995 | 21926 7563
2-fullins-5-4|t 6,4 3 3 71 3 2,2 | 2,2 2,5 3,2
n 722 263 263 771 288 179 179 243 111
3-fullins-5-5[t 52,5 24,9 | 253 | 37,2 46,8 35,4 | 35,5 | 47,8 58,6
n 722 263 263 771 288 179 179 243 738

fpsol2-i-1-5 |t 23,4 19,8 19,5 22,9 18,4 15,8 | 15,5 | 16,9 38,5
n 722 263 263 771 288 179 179 243 723

huck-8 [t 109,7 154 | 155,2 | 175,3 93 80,4 | 81,7 106 142,4

n| 220740 [220740(220740(220740| 221696 |221052|221052|221029 220740

Finally, in Table 4 we present results from benchmark random problems. One
can notice here the bigger cpu time variation among all heuristics. A possible
explanation for this diversity is the lack of structure that random instances have.
Heuristic aged-H1 displays the best performance in three cases, while the rest
of the heuristics at most in one.

Table 4. Results from random problems. Best cpu time is in bold.

Instance dom/wdeg| H1 | H2 | H3 |adom/wdeg| aH1 | aH2 | aH3 |fullyAssigned
b30-15-1 [t| 8,8 12,4 | 14,6 | 13,2 14,5 1,8 | 5,7 | 13,5 11
n 3659 5329 | 6457 | 5629 6175 766 | 2358 | 5872 4296
TTb30-15-2 [t| 84,3 | 67.0] 39 | 882 | 123,8 [113,1[117,7[117,1 118
n 35822 27924|15538(38218 50066 48892(49756(49750 13343
Tb30-15-3 [t 30,1 6,3 | 83,5 | 76,3 6.8 9 [153 76,2 10,3
n 11994 2572 13317230689 2833 3817 | 6435 [31826 2965
TTb30-15-4 [t| 12,7 | 73,5 | 76,9 | 48,7 16,1 7T A | 74,2 [19,7 90,2
n 5316 31451|35337(21510 6790 33810(33783| 8903 28310
20050-20-2 [t 33,7 | 30,1 [232,7] 07,4 21,7 21,5 [115,0[114,8 61,4
n 8029 6856 |61465(26483 5090 4763 [27590(30950 24670
20050-20-10[t| 9.4 53 | 318 | 8 11,9 45 470 6.0 10,3
n 2134 1136 | 7383 | 1909 2804 930 [11560| 1702 1653
20050-20-11]t| 19,2 | 25,6 | 12,0 | 12,9 3.1 I3 2 |655 7.3
n 4374 5908 | 2808 | 2811 720 1009 | 420 |16545 1148

As a general comment we can say that experimentally, all the proposed
heuristics are competitive with dom/wdeg and in many benchmarks a notable
improvement is observed. However, further experiments (e.g. with non-binary
problems) are required.

5 Conclusions

In this paper several new general purpose variable ordering heuristics are pro-
posed. These heuristics follow the learning-from-failure approach, in which infor-
mation regarding failures is stored in the form of constraint weights. By record-
ing constraints that are responsible for any value deletion, we derive three new
heuristics that use this information to spread constraint weights in a different
way compared to the heuristics of Boussemart et al. We also explore a SAT in-
spired constraint aging strategy that gives greater importance to recent conflicts.
Finally we proposed a new heuristic that tries to better identify contentious con-
straints by recording all the potential conflicts uppon detection of failure. The
proposed conflict driven variable ordering heuristics have been tested over a wide
range of benchmarks. Experimental results shows they are quite competitive to
the existing ones and is some cases they can increase efficiency.

References

1. T Balafoutis and K. Stergiou. Exploiting constraint weights for revision ordering in
Arc Consistency Algorithms. In Submitted to the ECAI-08 Workshop on Modeling
and Solving Problems with Constraints, 2008.

2. C. Bessiere, A. Chmeiss, and L. Sais. Neighborhood-based variable ordering heuris-
tics for the contraint satisfaction problem. In Proceedings of CP’01, pages 61-75,
2001.

3. C. Bessiere and J.C. Régin. MAC and combined heuristics: two reasons to forsake
FC (and CBJ?). In In Proceedings of CP-1996, pages 61-75, Cambridge MA, 1996.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

. F. Boussemart, F. Hemery, and C. Lecoutre. Revision ordering heuristics for the

Constraint Satisfaction Problem. In 10th International Conference on Princi-
ples and Practice of Constraint Programming (CP’2004), Workshop on Constraint
Propagation and Implementation, Toronto, Canada, 2004.

F. Boussemart, F. Hemery, C. Lecoutre, and L. Sais. Boosting systematic search by
weighting constraints. In In Proceedings of 16th Furopean Conference on Artificial
Intelligence (ECAI ’04), Valencia, Spain, 2004.

D. Brelaz. New methods to color the vertices of a graph. Communications of the
ACM, 22:251-256, 1979.

H. Cambazard and N. Jussien. Identifying and Exploiting Problem Structures
Using Explanation-based Constraint Programming. Constraints, 11:295-313, 2006.
R. Dechter and I. Meiri. Experimental evaluation of preprocessing techniques in
constraint satisfaction problems. In In Proceedings of IJCAI’89, pages 271-277,
1989.

N. Dershowitz, Z. Hanna, and A. Nadel. A Clause-Based Heuristic for SAT Solver.
In Proceedings of SAT-2005, pages 46—60, 2005.

E.C. Freuder. A sufficient condition for backtrack-free search. Journal of the ACM,
29(1):24-32, 1982.

D. Frost and R. Dechter. Look-ahead value ordering for constraint satisfaction
problems. In In Proceedings of IJCAI’'95, pages 572-578, 1995.

I.P Gent, E. Maclntyre, P. Prosser, B.M. Smith, and T. Walsh. An empirical study
of dynamic variable ordering heuristics for the constraint satisfaction problem. In
Proceedings of CP’96, pages 179-193, 1996.

E. Goldberg and Y. Novikov. BerkMin: a Fast and Robust Sat-Solver. In Proceed-
ings of DATE’02, pages 142-149, 2002.

D. Grimes and R.J. Wallace. Sampling strategies and variable selection in weighted
degree heuristics. In In Proceedings of CP 2007, pages 831-838, 2007.

R.M. Haralick and Elliott. Increasing tree search efficiency for constraint satisfac-
tion problems. Artificial Intelligence, 14:263-314, 1980.

M.C. Horsch and W.S. Havens. An empirical study of probabilistic arc consisteny
as a variable ordering heuristic. In Proceedings of CP’00, pages 525-530, 2000.
Y.S. Mahajan, Z. Fu, and S. Malik. ZChaff2004: An Efficient SAT Solver. In
Proceedings of SAT-2004, pages 360-375, 2004.

M. Moskewicz, C. Madigan, and S. Malik. Chaff: Engineering an efficient sat solver.
In In Proceedings of Design Automation Conference, pages 530-535, 2001.

P. Refalo. Impact-based search strategies for constraint programming. In In Pro-
ceedings of CP 2004, pages 556571, 2004.

L. Ryan. Efficient Algorithms for Clause-Learning SAT Solvers. Master’s thesis,
Simon Faser University, 2004.

D. Sabin and E.C. Freuder. Contradicting conventional wisdom in constraint sat-
isfaction. In In Proceedings of CP 94, pages 10-20, 1994.

B.M. Smith. The brelaz heuristic and optimal static orderings. In In Proceedings
of CP’99, pages 405418, 1999.

B.M. Smith and S.A. Grant. Trying harder to fail first. In In Proceedings of
ECAI’98, pages 249-253, 1998.

R. Wallace and E. Freuder. Ordering heuristics for arc consistency algorithms. In
AI/GI/VI, pages 163-169, Vancouver, British Columbia, Canada, 1992.

R. Zabih. Some applications of graph bandwith to constraint satisfaction problems.
In In Proceedings of AAAI’90, pages 46-51, 1990.

